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A B S T R A C T   

This paper presents a method for calibrating a 2D profile laser scanner mounted on an industrial articulated 
robot; a task also known as the hand-eye calibration problem. The challenge of recovering the transformation 
matrix, from the robot’s flange coordinate system to the scanner’s coordinate system, lies in the lack of sufficient 
3D information, as only 2D data is available. The task is typically performed using precision calibration speci
mens such as spheres, disks, and planes or using additional external devices such as cameras and 3D sensors. 
Here, we present an approach based on detecting straight edges found in common objects. Points extracted from 
the same edge, under various robot poses, are used to solve the calibration problem using a two-phase least- 
squares strategy, where rotation is recovered first, followed by translation. The process is semi-autonomous, 
requires minimal laborious and error-prone manual operations; its setup effort is small, because common ob
jects can be used instead of costly precision gauges or external devices; it does not require large number of 
samples and it is simple to reason about, implement and compute.   

1. Introduction 

As computer vision sensors became progressively affordable over the 
past decades, their application increased in manufacturing and indus
trial quality control. Indicative examples include inspection of airplane 
engine blades [1], detection of surface abnormalities on machined 
components [2], robot grinding of aviation and turbine blades [3], 
robot-assisted medical applications [4], reverse engineering objects to 
CAD models [5], and automatic robot navigation [6-8]. 

The work presented here focuses on a subset of computer vision 
sensors, namely 2D profile scanners. They acquire series of points ps : [xs,

0, zs], where xs is the horizontal and zs is the depth coordinates with 
respect to the sensor’s scanning plane. Applications include measuring 
linear dimensions, verifying heights, and comparing designed versus 
manufactured objects [9-11]. Mounting profile scanners on positioning 
equipment allows for 3D shape reconstruction once the scanner and 
positioner are coordinated. 

Integration of computer vision with positioning equipment, such as 
an articulated industrial robot arm (see Fig. 1), requires performing a 
process known as hand-eye calibration [12]. Its objective is to determine 
the transformation matrix between the robot’s flange coordinate system 

(Fb) and the scanner’s vision coordinate system (Fs), such that data ac
quired from different poses, robot positions and orientations, may be 
registered against a common 3D coordinate system, such as the robot’s 
base (FB). 

While it is possible to measure the rotation angles and translation 
offsets between the scanner and flange manually, using for instance 
calipers, higher accuracy may be achieved using the positioner’s and 
sensor’s data. Solutions have been presented for hand-eye calibration for 
various equipment configurations [13-21]. We may classify those as 
either specimen-based, where a geometrically known physical object is 
used to assist in determining the missing transformation parameters 
using samples acquired from different poses [16,18,19]; and externally 
assisted methods, where additional sensing instruments are used to 
measure the relationship between the positioner and the scanner [20, 
21]. Higher accuracy may be achieved using external measuring devices 
[20,22–25]. Nevertheless, specimen-based approaches, including the 
one presented here, are highly popular for being less costly and simple to 
perform regularly [26,27]. The challenge of calibrating profile scanners 
is in the missing spatial information given ys = 0. 

Relevant literature on profile sensor calibration methods uses 
various specimen geometries such as flat planes [13-15], circular disks 
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[16], spheres [17-19], blocks [21], and cross-hair targets [28,29]. 
Comparatively, these methods vary in the degree of manual effort and 
operator’s level of expertise required in acquiring data [19,29]; the 
preparatory work on scanner fixtures and/or the measurement envi
ronment setup in the presence of obstructions [28]; the size of the data 
sets required in terms of the number of robot poses [4,14]; the precision 
and cost associated with the measured specimens [16,18,19]; and the 
complexity of the mathematical formulation recovering rotation and 
translation combined [13,14] or separately [12,30,31], using linear [13, 
14,28] versus non-linear [25,32], analytical [33] or iterative methods 
[13,14]. 

In this article, we propose a novel hand-eye calibration approach for 
profile sensors. Its geometric concept is based on sampling points from a 
straight edge, under various robot poses, and exploiting the implied co- 
linearity relationships to form systems of equations to recover the 
scanner’s rotation and translation. There are several benefits in this 
approach: It does not require laborious sampling regimes and it is less 
amenable to human error, as the operator only needs to ensure that the 
laser line crosses the edge, as opposed to, methods requiring the oper
ator to visually ensure the laser is passing exactly at the apex of a tapered 
pin, the center of a sphere or that it aligns with a crosshair target. It does 
not also require extremely precise or costly specimens; we demonstrate 
this by comparing precision-made artifacts with everyday common ob
jects. It is conceptually simple, because we are working directly with 
observable features, namely edges, as opposed to plane normals and 
sphere centers. Finally, the mathematical formulation presented is based 
on elementary geometry concepts and linear regression techniques 
which may be efficiently implemented and solved. 

2. Theoretical background 

In line with relevant literature, we use homogenous R 4×4 trans
formation matrices to concisely express rotations and translations. We 
assume the world coordinate system coincides with the robot’s base 
coordinate system, expressed as the identity matrix. Calibration aims at 
computing the scanner’s rotation matrix RS ∈ R 3×3 and translation 

vector TS ∈ R 3, with respect to the robot’s flange Rb ∈ R 3×3 and 
Tb ∈ R 3. The robot’s pose is directly controllable, thus the flange co
ordinate system Rb, Tb with respect to the robot’s base is known. Profile 
points ps : [xs, 0, zs] acquired from the scanner are also known, with 
respect to the unknown scanner’s coordinate system Rs, Ts. Finally, 
profile positions pb : [xb, yb, zb] with respect to the robot’s base are also 
unknown (see Fig. 2). These relationships are expressed in homogenous 

Fig. 1. An industrial robot with a 2D profile scanner (cyan). FB represents the robot base coordinate system, Fb is the robot flange coordinate expressed in relation to 
FB; and FS is the scanner coordinate system. The objective of hand-eye calibration is to recover the transformation between Fb and FS such that profiles scanned can be 
registered against FB. The rotation and translation between Fb and FS are RS, TS, respectively. 

Fig. 2. Detail view of profile acquired from rectangular specimen and corre
spondence between feature point from edge detection with respect to the robot 
base coordinate space and the same point in the scanner coordinate space. 
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coordinates (Eq. 1), which states that the same point may be directly 
expressed with respect to the robot’s base coordinate system (LHS) or as 
the product of a transformation from the robot’s flange to the profile 
scanner’s coordinate system (RHS). 
[

pb
1

]

=

[
Rb Tb
0 1

]

⋅
[

Rs Ts
0 1

]

⋅
[

ps
1

]

(1) 

We offer a sketch of the geometric logic before delving into the 
algebraic details. From a straight edge specimen, we extract multiple 
profile discontinuity feature points by sampling the specimen under 
different robot poses. Sampling follows a grid-like pattern, where rows 
and columns represent varying the robot’s flange rotation and trans
lation. Keeping the flange’s rotation constant and varying translation, 
allows us to algebraically eliminate the scanner’s translation component 
and derive equations for its rotation. However, we need multiple flange 
orientations to recover scanner’s rotation, resulting into stacks of those 
equations. We recover the scanner’s translation by using equations 
expressing the constraint that all points’ distances to the linear edge 
must be notionally zero. In the presence of various sources of error, 
namely the robot, the scanner and the specimen, we approach recovery 
in a least-squares sense. 

2.1. Recovering the rotation 

We collect a series of profiles by translating the robot’s flange, 
varying Tb, while retaining the robot’s orientation Rb constant (see Fig. 3 
left). Next, we extract feature points p[1], p[2],…p[n] from each profile. 
Feature points in the scanner’s coordinate system are expressed as ps[1],

ps[2], …ps[n], with the equivalent in robot’s base coordinate system 
expressed as pb[1],pb[2],…pb[n]. We may rewrite equation (1), noting that 
the only varying quantities under these conditions are pb, ps, and Tb with 
a series of profiles under fixed flange orientation. 

pb = Rb(Rsps + Ts) + Tb (2) 

A first step towards eliminating unknown points from equation (1) is 
achieved by forming vectors from the first feature point p[1] to all others 
p[2],p[3],…p[n]. A vector, from points pb[1] to pb[i], where i > 1, with respect 
to the robot’s base, is expressed as ub[i] = pb[i] − pb[1]. Expanding this using 

Eq. (2) allows us to eliminate the scanner’s translation component TS, as 
shown in Eqs. (3, 4), and obtain Eq. (5) where us[i] represents the edge’s 
direction in the scanner’s coordinate system and ut[i] represents the 
known robot’s motion vector with respect to the robot’s base. 

ub[i] = Rb(Rsps[i] +Ts) + Tb[i] − Rb(Rsps[1] +Ts) − Tb[1] (3)  

ub[i] = RbRsps[i] − RbRsps[1] + Tb[i] − Tb[1] (4)  

ub[i] = RbRsus[i] + ut[i] (5) 

The second step towards deriving computable expressions, considers 
two different such directions ub[i] and ub[j]; we thus need at least three 
samples per rotation set. Both originating from the same straight edge in 
physical space, allows us to express their parallelism as ‖ ub[i] × ub[j]‖= 0. 
Using the rotational invariance of the cross product and expanding Eq. 
(6) produces: 

‖ (RbRsus[i] + ut[i]) ×
(
RbRsus[j] + ut[j]

)
‖= 0 (6)  

‖ RbRsus[i] × RbRsus[j] + RbRsus[i] × ut[j] − RbRsus[j] × ut[i] + ut[i] × ut[j]‖= 0
(7)  

‖ RbRs
(
us[i] × us[j]

)
+ RbRsus[i] × ut[j] − RbRsus[j] × ut[i] + ut[i] × ut[j]‖= 0 (8) 

We may rewrite the first three parts of Eq. (8) to isolate the scanner’s 
rotation Rs matrix, using matrix vectorization rs = vec(Rs) and the Kro
necker product, denoted with ⊗ . 

RbRs
(
us[i] × us[j]

)
=

( (
us[i] × us[j]

)T
⊗ Rb

)
rs (9)  

RbRsus[i] =
(
(us[i])

T
⊗ Rb

)
rs (10)  

RbRsus[j] =
( (

us[j]
)T

⊗ Rb
)
rs (11) 

Applying (9-11) to Eq. (8) produces Eq. (12). Note that the 
substituted terms (13-16), listed for clarity, capture known quantities, 
namely vectors from scanned points, the robot’s flange rotation and the 
cross product of motion vectors. 

‖ B1rs + B2rs × ut[j] − B3rs × ut[i] − br‖= 0 (12) 

Fig. 3. Profiles of the same edge are collected from several robot poses and the edge feature points are extracted. Sampling follows a grid-like structure, where rows 
and columns represent varying the robot’s flange translation and rotation. 
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B1 =
( (

us[i] × us[j]
)T

⊗ Rb
)

(13)  

B2 =
(
(us[i])

T
⊗ Rb

)
(14)  

B3 =
( (

us[j]
)T

⊗ Rb
)

(15)  

br = − ut[i] × ut[j] (16) 

Using the skew-symmetric matrix form of the cross product (17), the 
motion vectors ut[i] and ut[j] are also brought into matrix-vector product 
form (18) and (19). 

[a]T× =

⎡

⎣
0 a3 − a2

− a3 0 a1
a2 − a1 0

⎤

⎦ (17)  

B2rs × ut[j] =
[
ut[j]

]T
×

B2rs (18)  

B3rs × ut[i] = [ut[i] ]
T
×

B3rs (19) 

Performing the cross-product to matrix substitutions to Eq. (12) 
produces the Eq. (20), with substitution terms (21-23) listed for clarity. 

‖ A1rs + A2rs − A3rs − br‖= 0 (20)  

A1 = B1 (21)  

A2 =
[
ut[j]

]T
×

B2 (22)  

A3 = [ut[i] ]
T
×

B3 (23) 

Factoring Eq. (20) and compounding data matrices, produces a 
desirable linear form (25) which may be solved in a least-squares sense. 
The r subscript denotes that these Eq.s are aimed to recover the rotation 
of the scanner’s transformation matrix. 

(A1 +A2 − A3)rs = br (24)  

Arrs = br (25) 

To obtain the scanner’s rotation, we need to form an overdetermined 
system with a tall matrix Ar by stacking blocks of Eqs. (25), where each 
block represents sampling using a different flange rotation. The problem 
can now be approached in a least-squares regression sense using Eq. (26) 
to obtain r′

s. 

r’
s= argmin ‖Arrs − br‖

2 (26) 

We compute (26) using the Singular Value Decomposition (SVD) to 
obtain r′s = V1SUT

1br. However, the matrix R′

s associated with the vector 
r′

s, is not necessarily orthonormal and therefore not a valid rotation 
matrix. An orthonormal matrix in the nearest sense [34], R∗

s may be 
recovered using the SVD of matrix R′

s, where det(U2)det(V2) in the di
agonal matrix is used to avoid improper rotations [31,35]. 

R∗
s = U2

⎡

⎣
1

1
det(U2)det(V2)

⎤

⎦VT
2 (27)  

2.2. Recovering the translation 

With the rotation matrix R∗
s recovered, we compute the unit direction 

vector of the straight edge u∗
b in the robot’s base coordinate system from 

Eq. (5) using Principal Components Analysis (PCA). For two points, pb[i]

and pb[j] with respect to the robot’s base coordinate system, sampled 
from different poses Rb[i], Tb[i] and Rb[j], Tb[j], their orthogonal Euclidean 
distance ‖ (pb[j] − pb[i]) × u∗

b‖= 0 to the specimen’s edge should be zero. 
Hence, expanding this distance using Eq. (2) and factoring relevant 

terms produces: 

‖
(
Rb[j]

(
R∗

s ps[j] +Ts
)
+ Tb[j] − Rb[i]

(
R∗

s ps[i] +Ts
)
− Tb[i]

)
× u∗

b‖= 0 (28)  

‖
(
Rb[j] − Rb[i]

)
Ts × u∗

b +
(
Rb[j]R∗

s ps[j] − Rb[i]R∗
s ps[i] + Tb[j] − Tb[i]

)
× u∗

b‖= 0
(29) 

We may simplify Eq. (29) by substituting known quantities with 
more concise matrix-vector notation using the following substitutions: 
(
Rb[j] − Rb[i]

)
Ts × u∗

b = CTs × u∗
b (30)  

−
(
Rb[j]R∗

s ps[j] − Rb[i]R∗
s ps[i] + Tb[j] − Tb[i]

)
× u∗

b = bt (31) 

Therefore, we produce Eq. (32) and proceed, as earlier, with 
replacing cross products with matrix-vector products. Again, we note 
that both matrix C and vector bt capture known quantities, namely the 
robot’s flange data and earlier computed values. 

‖ CTs × u∗
b − bt‖= 0 (32) 

Simplifying Eq. (32), using the skew-symmetric matrix form of the 
cross product (17), produces the desired form of Eq. (34). 

CTs × u∗
b =

[
u∗

b

]T
×

CTs = AtTs (33)  

‖ AtTs − bt‖= 0 (34) 

By minimizing Eq. (34), we obtain T∗
s 

T∗
s = argmin ‖AtTs − bt‖

2 (35) 

Obtaining the scanner’s translation offsets is also approached in a 
least-squares sense by stacking Eqs. (34) using multiple pairs of poses as 
long as they don’t belong to the same rotation group; to avoid canceling 
the scanner’s translation (see Eq. 28). Finally, it also solved using the 
same SVD approach as the discussion in Section 2.1. 

3. Instruments and experimental setup 

The laboratory setup is comprised of an industrial articulated six-axis 
robot (ABB IRB2600) with 1.65m horizontal reach and 20kg payload, 
driven by the industrial controller (ABB IRC5). The ISO9283 pose ac
curacy of the robot is 0.03 mm with 0.04 mm pose repeatability. The 
profile scanner used (Pepperl+Fuchs VLM350-F280-R4-1101) has a 
measurement range of 40 to 160 mm and 60 to 350 mm, in the X and Z 
directions, respectively. Its specified resolution is X > 0.25 mm, Z > 0.2 
mm at 60 mm distance. Its firmware reports at maximum 980 sample 
points per profile, quantized at 0.1 mm, encoded as 16-bit integers. No 
accuracy data is provided by the manufacturer. Measurement errors of 
edges by varying distance from the target are presented in the supple
mentary materials section. Experiments were conducted using various 
specimens including a machinist precision parallel bar with indicative 
accuracy of 0.01 mm, an engineering straight scale with a typical 
measurement accuracy of 0.1 mm, and a box cutter knife blade of un
known precision characteristics (see Fig. 4). Validation of the proposed 
method was performed using a precision ball with a 20mm radius and 
G10 sphericity as per ISO3290. 

Measurements are characterized by errors attributed to the posi
tional accuracy of the robot, the sensing accuracy of the scanner as well 
as the manufacturing tolerances of the specimens. The robot presents 
spatial errors across its work envelope result of its cantilevered structure 
and mechanical motor gearing. To minimize their influence, we per
formed calibration procedures as per the manufacturer’s specification, 
restricted actions within a small work sub-space, and performed motions 
such that the axes are loaded. The profile scanner presents errors pro
portional to the distance to the specimen scanned. We planned motions 
within the range of 60 to 90 mm distance between the scanner and the 
specimens, for which the scanner performs best, according to the man
ufacturer’s recommendations. The specimens were placed at an 
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arbitrary bias angle and an offset position against the robot’s base and 
scanner’s orientation to avoid singularities. The robot is jogged manu
ally above the center of the specimen in approximately vertical direc
tion. It was rotated manually to cover as large rotation angles as feasible 
within the constraint of the laser line crossing the same edge in the same 
sense. Translation motions follow a circular arc path. The arc’s span 
angle and radius are input into the data acquisition script. The values 
used depend on the specimen’s size, the robot’s work envelope and the 
need to scan the same edge consistently with enough variation of all 
numerical data collected. Delays between motions were introduced to 
minimize the influence of robot vibrations, and to ensure the robot and 
scanner data are in sync. Vertical retraction and approach motions be
tween poses were introduced to ensure the controller does not optimize 
away small motions. Feature point detection is directly supported by the 
scanner’s firmware, but we implemented a filter between consecutive 
points of a profile to ensure the same was consistently used. For thin 
specimens, such as the box cutter’s blade, feature point detection is 
automatic but for the machinist parallel bar, the side walls must be 
removed. Motion planning, scanner as well as flange data acquisition, 
communications and calibration model solving were performed using 
python and ABB Rapid programming. The program instructs the robot’s 
motion and collects the data, therefore the process is quasi-automatic 
(see supplementary video). 

4. Experimental context, results and discussion 

The system’s application context is quality control: to evaluate the 
shape of linear beads of adhesive material, approximately 12 mm in 
profile width by 3-4 mm in height, dispensed from the extruder mounted 
on the robot, on which the sensor is also mounted. The process aims at 
replacing manual 3D scanning, using an Artec MHT structured-light 
device with up to 0.5 mm resolution and 0.1 mm accuracy, using an 
integrated approach. Results that meet or improve the process are 
considered satisfactory. 

We conducted a series of experiments using straight edges from three 
specimens of various precisions characteristics to understand their in
fluence on calibration. Each of the straight edge specimens was scanned 
using 25 flange rotations by 10 translations. We also evaluated the 
number of samples used against their influence on the calibration re
sults. Finally, we scanned a precision sphere to assess if we can match its 
radius and to verify the calibration, beyond analysis of the straight edge 
results. 

4.1. Straight edge experiments 

The calibration method has two phases, for each we introduce an 

error criterion. We use an angle deviation criterion Δα for the rotation 
recovery phase because we are working with vector quantities. 
Semantically, it captures the notion of the parallelism constraint. The 
criterion measures the fitness of alignment between the straight edge’s 
direction obtained after performing principal components analysis, 
against the edge direction vectors estimated from each individual rota
tion group. The Euclidean distance criterion Δd, for the translation re
covery phase, captures how well, feature points of sampled profiles, 
describe a common line in space, as a function of their projected dis
tances onto it. Semantically this captures the co-linearity constraint (see 
Fig. 5). We executed the calibration process repeatedly by incrementally 
reducing the number of rotational poses used, from the maximum 
collected, in the order they were collected, to evaluate the change of 
errors in relationship to the number of samples. While limited within the 
original motion range domain, this approach offers insight in under
standing how many poses may be sufficient. 

The relationship between Δα and the number of scanning rotations 
for the three different calibration objects is shown in Fig. 6. At 15 ro
tations and greater, we observe that there is hardly any influence on Δα. 
Based on this observation, we then only take into consideration the data 
obtained for 15, 20 and 25 rotations. Between this range of rotations, the 
absolute minimum and maximum mean(Δα) was 0.73◦ and 1.16◦, and 
the minimum and maximum std(Δα) was 1.66◦ and 2.67◦, as shown in 
Table 1. 

The relationship between Δd and the number of scanning rotations 
for the three different calibration objects is shown in Fig. 7. Likewise, we 
observe that there is hardly any influence on Δd when the number of 
rotations is 15 and greater. Between 15, 20 and 25 rotations, the mini
mum and maximum mean(Δd) was 0.22 mm and 0.31 mm, and the 
minimum and maximum std(Δd) was 0.12 mm and 0.16 mm, as shown 
in Table 2. 

From Table 1 and Table 2, we can observe that the influence of the 
three calibration objects is less than 0.1 mm, which demonstrates that 
the process is robust. Considering the sensor’s and robot’s limitations 
and the purposes of our application these deviations are also acceptable. 

4.2. Sphere reconstruction experiment and results 

Using the calibration parameters computed from the straight edge 
specimens, we performed a sphere reconstruction experiment to eval
uate the method for 3D scanning suitability and to validate the cali
bration results. A precision steel ball with a 20 mm radius was fitted and 
its radius r was estimated, based on 60 profiles from 10 rotation groups 
of 6 translation profiles each (see Fig. 8). 

The hand-eye calibration matrices, from the earlier section, were 
used to transform the profiles from 2D with respect to the scanner’s 

Fig. 4. Left: Machinist’s precision ground parallel bar. Middle: Engineering straight scale. Right: Utility box-cutter knife blade.  
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coordinate system, to 3D with respect to the robot’s base coordinate 
system. Points of the sphere were extracted, and a sphere was fitted to 
the point-cloud using sphere regression [36]. The estimated radius re
sults obtained are presented in Table 3, for each of the calibration 
specimens, with a varying number of rotations considered from 10 to 25. 
The minimum and maximum deviation of the estimated radius is in the 
range of 0.01 and 0.08 mm. The results show that the method is robust, 
and the accuracy of calibration is satisfactory for reconstruction. 

5. Conclusion 

A hand-eye calibration method for 2D profile laser scanners mounted 
on spatial positioners was presented. The theoretical basis of this 
straight edge-based approach was described, and experimental results 
were presented and discussed. The unique characteristic of this method 
is in its simplicity in both the sense of the regime of data acquisition as 

well as its mathematical formulation and computation. Straight edges 
are elementary in description, common to numerous manufactured 
products and detection thereof is 2D profile scanners’ primary mode of 
operation. The experimental results for our application are satisfactory. 
Nevertheless, the method is general so profile sensors and positioners 
with better technical characteristics may achieve better results suit for 
purpose. The method may be improved by automating the data acqui
sition phase using incremental motions from the initial pose to infer the 
motion ranges. In a mathematical sense a more elegant single-phase 
derivation of the same concept may be possible using projective geo
metric algebra concepts [37,33,38]. 
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Fig. 5. Left-to-Right: Profiles are color-coded per robot’s flange rotation. Their points form vectors from which the spatial edge direction is computed. The angle 
error represents rotation groups deviations from the spatial edge estimate. After translation is recovered, feature points distances from the spatial edge are used to 
compute the distance error criterion. 

Fig. 6. The mean and standard angular dimensions’ deviations (Δα) of the first regression model.  

Table 1 
The mean and standard of Δα for 10, 15, 20, 25 scanning rotations.  

Number of 
Rotations 

mean(Δα) from Parallel 
Bar (◦)  

std(Δα) from Parallel 
Bar (◦)  

mean(Δα) from Straight 
Scale (◦)  

std(Δα) from Straight 
Scale (◦)  

mean(Δα) from Knife 
Blade (◦)  

std(Δα) from Knife 
Blade (◦)  

10 2.19 2.55 3.10 4.46 1.85 2.38 
15 1.16 2.56 0.74 2.32 0.81 2.08 
20 -1.03 2.67 0.86 1.95 0.84 1.74 
25 -1.12 2.39 0.73 1.86 0.94 1.66  
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Fig. 7. The mean and standard deviations of the Euclidean distances (Δd) of the second regression model.  

Table 2 
The mean and standard deviations of Euclidean distances (Δd) for 10, 15, 20, 25 scanning rotations.  

Number of 
Rotations 

mean(Δd) from Parallel 
Bar (mm)  

std(Δd) from Parallel 
Bar (mm)  

mean(Δd) from Straight 
Scale (mm)  

std(Δd) from Straight 
Scale (mm)  

mean(Δd) from Knife 
Blade (mm)  

std(Δd) from Knife 
Blade (mm)  

10 0.27 0.16 0.37 0.19 0.27 0.17 
15 0.28 0.15 0.22 0.12 0.26 0.14 
20 0.30 0.16 0.22 0.14 0.26 0.14 
25 0.31 0.16 0.23 0.15 0.25 0.14  

Fig. 8. Left: A sphere was fitted based on 10 groups of scanning rotations and 6 profile lines for each scanning rotation. Right: The laser sensor scanning a bearing 
steel ball with a 20 mm radius. 

Table 3 
The estimated radius (r) for 10, 15, 20, and 25 scanning rotations.  

Number of 
Rotations 

Parallel Bar 
(mm) 

Straight Scale 
(mm) 

Knife Blade 
(mm) 

10 20.06 19.99 19.94 
15 19.99 20.04 19.92 
20 19.99 19.99 19.95 
25 19.99 19.99 19.96  
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